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Abstract. Recent results regarding electron- and hole-doped CuO2 planes can be rather easily explained
by the marked covalency of CuO bonding, suggesting a band picture of long and short range antiferromag-
netism. The maxima of superconductive Tc versus doping can be related to the crossing by the Fermi level
of the edges of the pseudogap due to antiferromagnetic short range order (bonding edge for hole-doping,
antibonding for electron-doping). The symmetry of the superconductive gap can be related to the Bragg
scattering of electronic Bloch states near the edges of the antiferromagnetism (AF) pseudogap. Assuming a
standard phonon coupling, one then predicts for commensurate AF a pure dx2−y2 symmetry for the super-
conductive gap for underdoped samples and dx2−y2 symmetry plus an imaginary contribution of s or dxy

symmetry contribution increasing linearly with overdoping. This seems in agreement with recent measure-
ments of gap symmetry for YBCO, but should be more fully tested, especially for electron-doped samples.
Incommensurate AF, as in LSCO, is not considered here. The simple Hartree-Fock band approximation
used could no doubt be made more realistic by specific inclusion of electron correlations and by a better
description of the AF short range order. This weak atomic repulsion U model, standard in transitional
metals, is complementary to the strong U models usually assumed in oxides. It considers specifically the
possible effects, in doped samples, of a short range AF which could be slowly dynamical or static, possibly
including in that case recent evidences of nanostructures of two different phases.

PACS. 74.72.-h High-Tc compounds

Recent studies of oxide superconductors have been domi-
nated by strong correlation models relating to large atomic
repulsion U on copper atoms. From that point of view,
if all such models derive from the Zhang and Rice tJ
model [1], and as such have some measure of covalency, as
defined below, it is useful to distinguish Zhang and Rice’s
work and its derivatives on AF phases of undoped samples
such as [2], which assume a large covalency and ensuing
strong delocalisation of the holes on oxygen ions, from re-
cent weak covalency models such as in [3] and [4], applied
to non magnetic phases assumed valid for doped samples.
The latter models are assumed to be on the covalent side
of the Brinkman and Rice critical point, but near enough
to it to have a very small renormalised transfer integral t,
coherent with the assumption of a large value of U [5].

With this background in mind, the purpose of this pa-
per is to propose an approximate but original description
of superconductivity in the cuprates. It uses a number of
concepts which were successively considered by one of the
authors in this field, as shown in references [6] to [9]. These

a associé au CNRS

concern the covalency in the CuO2 planes and the pseu-
dogap due to antiferromagnetic short range order. We feel
it is the simplest if not the only way to explain recent ex-
periments, which have stimulated anew our interest in the
field: they confirm the qualitative symmetry of the phase
diagrams of electron- and hole-doped compounds [4,10,
11] and the symmetry of the superconductive gap as a
function of doping [12]. They assume a short range Anti-
ferromagnetism which could be slowly dynamical or static,
therefore possibly including in the latter case recent evi-
dences of nanostructures of two different phases [13]. The
essential conclusion is that the maxima of the critical su-
perconductive temperature occur where the Fermi level
crosses one of the peaks of the density of states associ-
ated with the AF pseudogap. This suggestion was made
privately some years ago by the authors to D. Pines, but
never published as will subsequently be explained. Finally,
for many reasons, although crude, this model can be de-
veloped to include various specific characteristics of some
of the cuprates.
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1 Three types of LCAO pictures [6] to [9]

In the simplest linear combination of atomic orbitals
(LCAO) picture for the CuO2 planes common to all
cuprates, three parameters are involved: the transfer inte-
gral t between neighbouring Cu 3d and O 2p atomic func-
tions, their energy difference ∆ = E3d−E2p and the intra-
atomic repulsion U between electrons on a Cu ion. This
simple approach neglects small possible distortions from
a square lattice. It also neglects interactions of a given
CuO2 plane with its surroundings, especially the coupling
between parallel planes responsible for three dimensional
(static) superconductivity. This essential part [7] will have
to be introduced as a correction which will not be dis-
cussed here.

Three situations have been envisaged within these
limits.

1.- Ionicity: ∆ � U � t This starting point in many
early discussions does not fit with the presence of holes
in O 2p shells, increasing in number with hole-doping, as
shown by X-rays and NMR techniques [14].

2.- Charge transfer: U � ∆ � t This fits better with
the doping of holes in O 2p shells, and agrees with the elec-
tronic structure of small clusters [15]. However it does not
fit with the observation of holes in O 2p shells in non doped
samples [14]. It is also difficult to explain in this way the
qualitative but striking symmetry observed in the phase
diagrams for electron-and hole-doping of the CuO2 planes
(Fig. 1). It would indeed be difficult to explain the symme-
try observed in antiferromagnetism and superconductivity
(S) [10,11], as well as the change from holes to electrons
in Hall conductivity beyond the optimum dopings (z0, z

′
0)

for maximum superconductive Tc [11,15]. The basic elec-
tronic structures are very different in this charge transfer
model: less than one hole per Cu ion in the electron-doped
samples; while, in the hole-doped samples, one hole per Cu
ion and the excess holes are distributed on the O ions. The
observed qualitative symmetry is especially clear in recent
experiments where carriers are introduced by an electric
voltage [11], thus avoiding possible distortions of phase
diagrams due to differences in chemical dopings for holes
and electrons. Finally, if U � ∆, the presence of one hole
on each Cu ion in hole-doped samples would block effec-
tively the motion of O 2p holes if other types of transfer
between O 2p orbitals were not invoked in a somewhat
artificial way [5].
3. Covalency: U ≷ w = γt ≥ ∆ with γ � 1
w is here the effective width of the covalent band built with
the Cu 3d and O 2p orbitals. This condition is actually
fulfilled by the studies on clusters mentioned above [16],
owing to the fact that each Cu has more neighbours in a
CuO2 plane than in the clusters considered by [8].

In this case, O 2p holes should be present in sizeable
amounts for zero doping and also for reasonable amounts
in the case of electron- or hole-doping. The qualitative
symmetry of phase diagrams for electron- and hole-doped
compounds results naturally from the near symmetry of
the Cu 3d-O 2p bonding developed in this limit.

z
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Fig. 1. Qualitative symmetry of AF and superconductive (S)
phases versus doping z in cuprates.

We shall use this picture as the most reasonable at
present. It fits with the fact that, in Pauling’s electro-
negativity scale, copper, at the end of the 3d transitional
series, is not very far from oxygen. This scheme would
obviously be usefully confirmed if O 2p holes were also
observed in electron-doped compounds (e.g. by X-ray ab-
sorption spectra) or if the qualitative symmetry observed
for magnetism, superconductivity and antisymmetry for
Hall transport was extended as we expect to other prop-
erties discussed below, namely AF short range order, the
pseudogap and changes in symmetry with doping of the
superconductive gap.

2 Ionocovalency. Correlation effects [7,8]

First, in the uncorrelated picture where U is neglected,
the general tight binding equations give, for the partially
filled antibonding band:

Ek
∼

=

Ed +
1
2

[
∆ +

{
∆2 + 16t2

(
sin2 kxa

2
+ sin2 kya

2

)}1/2
]

(1)

with a width:

w =
1
2

[
(∆2 + 32t2)

1
2 − |∆|

]
. (2)

The Fermi level for zero doping lies along the square

cos kxa + cos kya = 0 (3)

For a pure covalent limit ∆ = 0

Ek
∼

= Ed + 2t

(
sin2 kxa

2
+ sin2 kya

2

)1/2

(4)

and

w = 2
√

2t. (5)

The Cu 3d and O 2p states play equivalent roles, so that
the holes are equally distributed between them. For zero
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doping, each Cu ion has 0.5 holes and each O ion 0.25. This
is to be compared with the ionic limit ∆ � w, where:

Ek
∼

∼= Ed + ∆ +
4t2

∆

(
sin2 kxa

2
+ sin2 kya

2

)1/2

with a (smaller) width:

w ∼= 4
√

2t2

∆
·

Computations on clusters suggest an approximate co-
valent limit, where ∆ is positive and of the order of at
most 2t and therefore, according to (2), less than w [7,16].
Equation (1) then shows that the equirepartition of holes
between Cu and O is still approximately preserved near
the middle of the antibonding band, thus practically near
the Fermi level. Near the edges of that band, pure 2p
character prevails at the bottom and pure 3d at the top,
over a width δka ∼= ∆/2t. As the area 4π2/a2 corre-
sponds to one hole per cell in undoped compounds, the
pocket of 2p character at the bottom of the band contains
πδk2a2/4π2 ∼= ∆2/16πt2 Cu 3d holes per cell. For ∆ ∼= 2t,
this is a small fraction. There shall therefore be a small
and constant shift of the holes from O to Cu, independent
of doping when ∆ increases from 0 to its likely value of 2t.

We should now include electron correlations by consid-
ering U �= 0, but shall at the moment neglect the (impor-
tant) magnetic consequences, to be discussed later. The
effect of U will be to reduce the charge fluctuations on the
Cu ions. In the covalent limit considered here, this will
decrease somewhat the effective width of the band consid-
ered, without however changing the delocalised electron
picture. In fact, these electron correlations should have
small consequences.

The same applies to the d band of transitional met-
als such as Ni, Pd, Pt, with also a fraction of d holes
per atom. In the limit of a small number of d holes per
atom, it is known that the intraatomic Coulomb repulsion
cannot, as such, create a Mott-Verwey insulator and that
the correlations only reduce the large charge fluctuations
without much changing the conductive and cohesive prop-
erties. Indeed, the correlations can be described in terms
of an effective S matrix [17]:

Ue
∼= U/(1 + U/w0)

always smaller than the band width w0 of the holes. U is
itself strongly reduced from its pure Hartree-Fock value
by intra-atomic correlations and cohesion and magnetic
properties can be satisfactorily described in small power
developments in U [18], neglecting the weak interatomic
exchange J at the root of magnetic couplings in the ini-
tial tJ model.

This is the weak correlation approach which we shall
consider here for the CuO2 planes, with an effective U of
the order of a few t’s.

These qualitative considerations have been recently
confirmed by computations of the model considered here
(∆, t, U and t′ = or �= 0), in the limit of infinite U [3].
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Fig. 2. Fermi surface for non magnetic compounds. 0 zero
doping (square ABCD); e electron- doping; h hole-doping.

The band structure is preserved below the Brinkman and
Rice critical point ∆ = 5t and, for ∆ = 2t, the renormali-
sation of t is not much more than the classical value 1/

√
2

obtained for ∆ = 0. Indeed, the limit of infinite U , valid of
course near the Brinkman and Rice limit, has no obvious
application in the covalent limit (∆ small).

3 Long range antiferromagnetism [7]

We consider now the long range antiferromagnetism ob-
served for small dopings of holes or electrons (Fig. 1).

For zero doping, we shall assume with Lomer that the
effect of Ue is to stabilise an antiferromagnetism of wave
vector Q0

�

with a magnitude equal to the size of the Fermi
surface (Fig. 2). This antiferromagnetism commensurate
with the lattice will induce a gap in the density of states,
thus producing a band insulator. The perfect nesting of
the Fermi sheets by the Q0

�

translation corresponds to a
strong instability and thus a priori to rather large mo-
ments on the copper ions. The total atomic moments de-
veloped cannot be larger than the average number of holes
on the copper ions, which is itself not much larger than 0.5.
Observed atomic moments µ of order 0.5 µB are therefore
not surprising. In the approximation of our model and
within an extended Hartree-Fock scheme, such moments
lead to corrections ±Ueµ/µB to the copper atomic poten-
tial, depending on the relative directions of the electronic
spin and the atomic moment considered [30]. Indeed the
observed Néel temperature TN and the AF gap are com-
patible with Ue � w and a perturbation treatment of Ue.
The situation above TN probably involves AF fluctuations
and possibly an Anderson localisation by magnetic disor-
der [7], but this range has been little explored.

For finite doping, Lomer’s argument would lead to a
static incommensurate antiferromagnetism, with a wave
vector Q

�

varying essentially linearly with doping, so as to
follow the size of the Fermi surface. However in most cases,
the antiferromagnetism remains commensurate with the
lattice, with the wave vector Q0

�

. This will be the only case
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discussed here. It can be understood as arising from the
very sharp and quasionedimensional feature of the peak
in density of states at the edges of the AF gap, near the
square of size Q0

�

(Figs. 2 and 3). For this commensurate
AF, increasing numbers of carriers due to doping should
shift the Fermi surface away from the AF gap. However,
because of the large gap and its very sharp peaks in the
density of states, one can expect the carriers in this range
to be preferentially captured by doping imperfections and
not to carry current. In the recent experiments of dop-
ing by electrical voltage, one can similarly think of the
injected carrier as captured by imperfections or of the ap-
plied voltage being smaller than the AF gap. In both cases,
the doped AF phase should again be insulating.

More precisely, in the presence of an antiferromag-
netism with a magnetic potential alternating from Cu to
Cu ion, the energy of the band electrons becomes:

EK
∼

=
1
2

(
Ek

∼

+ Ek
∼

−Q0
∼

)
± 1

2

[(
Ek

∼

− Ek
∼

−Q0
∼

)2

+ 4|v|2
]1/2

(6)

where v = 〈k
∼

|v|k
∼

−Q0
�

〉 is the matrix element of the atomic
potential ±Ueµ/µB due to antiferromagnetism. The cor-
responding wave function is:

|K
�

〉 = αk
∼

|k
∼

〉 + βk
∼

|k
∼

− Q0
�

〉 (7)

with:

βk
∼

αk
∼

= − EK
∼

− Ek
∼

〈k
∼

|v|k
∼

− Q0
�

〉 · (8)

Using the remarks above that only states near to the
Fermi level are involved in the magnetic perturbation and
that these states are not very sensitive to ∆ (i.e. Ue and
∆ small), we can compute EK

∼

in the extreme covalent
limit ∆ = 0.

The AF gap, of width 2|v|, is centred at energy

E0 = Ed + 2

as pictured in Figure 3. Development along the side AB,
Figure 2, gives with:

kxa + kya = π − ε , ε → 0
kxa − kya = u (9)

EK
∼

∼= E0 ± |v| ± t2

|v|ε
2 cos2

u

2
· (10)

The corresponding density of states diverges at the gap
edges. Thus, if δE is the distance of E to the gap,

n(E) ∼= const ×
( |v|

t2|δE|
)1/2

ln
(

const × t2

|v||δE|
)
· (11)

The dominating contribution comes from the Van Hove
anomaly at the corners A and B of the square, Figure 2.
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Fig. 3. Antiferromagnetic gap g and pseudogap g′. B bonding
and AB antibonding peaks in the density of states. Dotted
curve: Van Hove singularity of non magnetic state. Abscissae:
energy E and doping z. E < Eo hole-doping; E > Eo electron-
doping.

Thus, near A:

EK
∼

∼= Eo ± |v| ± t2

4|v|
[
k2

xa2 − (π − kya)2
]2

. (12)

This van Hove anomaly is much flatter in energy than that
at the corners A and B for non magnetic phase when the
density of states only diverges logarithmically in δE [19].
The divergence in |δE| is also somewhat larger than the
contributions to n(E) along the side AB of the square
where, as in a one dimensional problem [20], they diverge
as |δE|−1/2. This striking result comes from the square
geometry of the Fermi surface of non doped samples; it is
also found in the ionic limit, if one assumes electrons to
be delocalised. Finally, on either side of the AF gap, the
surfaces of constant energy have the same form in recip-
rocal space as in the case of no gap (Fig. 2) but repeated
in all the squares neighbouring ABCD and with a reduced
energy scale.

The stability of the AF gap can be approximately mea-
sured by summing up the one electron energies of the oc-
cupied states:

∆E =
∫ EF

n(E)EdE −
∫ EF0

n0(E)EdE (13)

where EF and EFo are the Fermi levels in the presence
and in the absence of antiferromagnetism respectively;
n(E) and n0(E) are the corresponding densities of states
counted per CuO2 in a plane [4]. In (13), a self energy
term in Ue is counted twice and should be subtracted.
This affects the absolute stability of the AF phase, but
not the relative stability of magnetic phases with similar
magnetic moments.

The average number of doping electrons per CuO2 is:

z =
∫ EF

n(E) dE −
∫ EF0

n0(E) dE · (14)
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This gives:

d∆E

dz
= EF − EF0 (15)

d2∆E

dz2
=

1
n(EF )

− 1
n0(EF0)

· (16)

It is then easy to check that, for a commensurate AF
Q0
�

, ∆E(Q0
�

, z) has a minimum at zero doping, with a break
in slope d∆E/dz (related to the gap 2|v|, thus to Ueµ/µB)
and a negative curvature (due to the peak in n(E) near the
gap edges). The near symmetry of ∆E(Q0

�

, z) for electron-
and hole-doping is related to that of n(E), Figure 3. This is
related to the quasi one dimension of Ek

∼

near zero doping
and to the slow variation with doping of the magnetic
moment µ.

For an incommensurate AF at Q
�

∼= Q0
�

, the gap of n(E)
is expected to be smaller and therefore also the stability of
the corresponding AF phase, owing to the increasingly two
dimensional nature of Ek

∼

. This gives obviously a stability
∆E(Q0

�

, z) less marked and more asymmetrical, which can
be expected to usually be above ∆E(Q

�

R, z) in the region
of stable AF order (Fig. 4).

4 Short range antiferromagnetic order [7,8]

Ever since a strong antiferromagnetic short range order
was observed by neutron scattering and the Mössbauer
effect in a large range of hole-doped oxide superconductors
such as YBCO, it has been thought that this phenomenon
should play an important role in the phase diagram of
these materials. In particular, up to the optimum doping
z0 and beyond, this short range is strong at temperatures
well above the maximum of Tc and its possible effect on
superconductivity must be taken into account. We shall
restrict ourselves here to compounds with commensurate
short range AF and thus will not consider the somewhat
exceptional case of LSCO.

The first idea along these lines has been to consider a
coupling scheme of the electrons via AF fluctuations [21].
The observation of a superconductive gap with d symme-
try was apparently in agreement with this picture [22].

We shall take a different point of view, stressing first
the special properties and structures associated with this
short range AF. Discussion of the effect on the supercon-
ductive gap will be delayed until the last paragraph.

The main idea, first proposed in this field by one of
the authors [6] to [8] is that, when a long range AF is
replaced by a short range one of similar strength, the gap
g in the density of states should be replaced by a pseu-
dogap g’, as pictured Figure 3: the disorder should round
off the peaks B and AB of the density of states and if the
disorder is sufficient, a continuous trail of states, with a
density decreasing towards the middle of the gap should
appear. Such states in the pseudogap should be primarily
made of parts of evanescent Bloch functions of the real
gap connected together in the regions of disorder, in such
a way that, except possibly for Anderson localisation near
the middle of the pseudogap, such states should be con-
ducting. Such a qualitative picture of a pseudogap and
indeed its name were first evolved by Mott in the early
fifties, in connection with static atomic short range order.

Indeed Mott’s suggestion of the localisation of evanes-
cent Bloch waves in the middle of the pseudogap could
explain the non conductive behaviour of undoped samples
above TN if, as likely, a well defined local AF subsists in
that range. This would hold in all covalent models where
a Mott Verwey blocking is not possible in disordered AF,
neither in our model nor in that of Zhang and Rice [1].

A rough image of this pseudogap can be obtained by
considering a localised AF (commensurate) spin wave.
Looking for simplicity’s sake at the one dimensional prob-
lem, it is easy to compute the phase shifts produced in
a non magnetic matrix by the presence of a given length
of the commensurate AF phase. These phase shifts give a
good idea of the variation of the density of states produced
locally along the AF phase if this is much longer than the
Fermi length of the matrix, i.e. more than several inter-
atomic units. The coherence length of the short range AF
order fulfils this condition and one finds indeed a pseu-
dogap as sketched in Figure 3. A similar result would be
obtained for one-dimensional antiphase domains of ran-
dom sizes.

The existence of such a pseudogap should be retained
even for AF fluctuations, as long as they are slow com-
pared with the speed of Fermi electrons in the absence of
AF. A very similar situation has been experimentally and
theoretically studied for static and dynamical CDW and
SDW in quasione-dimensional organic compounds [23].

The decrease of the Y Knight shift in YBCO, when un-
derdoping increases below z0 [24], was first attributed to
the progressive opening of a pseudogap due to AF fluctua-
tions of increasing strength for decreasing doping z below
z0 [6]. Because of the geometry of the lattice, the Y nuclei
are indeed not very sensitive to the Cu moments as long as
these are coupled in commensurate (alternating) antiferro-
magnetism. The Knight shift then measures directly the
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Fig. 5. Schematic phase diagram for hole-doped cuprates.
AF and S: long range antiferromagnetic and superconductive
phases (as in Fig. 1); z0 optimum doping; Tp (and possibly Tp′):
temperatures of characteristic excitations from (and to) the
pseudogap binding peak associated with the short range AF.

density of delocalised Fermi states and is little sensitive
to the paramagnetism of the Cu moments. As expected in
such a picture, a peak in the density of states was observed
later at an excitation energy increasing from zero with z
decreasing from z0; and a corresponding anomaly was ob-
served at an increasing temperature Tp, Figure 5 [31]: this
excitation energy could be considered as measuring the
energy distance between the bonding peak B, Figure 3
and the Fermi level, assumed above EB for z < z0.

It is however clear in compounds with commensurate
short range AF that this AF short range order does not
decrease to zero at z0, but remains strong at low tem-
peratures well beyond this limit [34]. The crossing of the
binding peak B by the Fermi level at z = z0 is therefore
not so much due to a closing of the pseudogap with in-
creasing doping as to a shift of the Fermi level associated
with increasing hole-doping. It is this (new) point of view
that we wish to develop in this paper.

If we neglect the variation with doping of the ampli-
tude of magnetic moments, an analysis of stability based
on equations (13) to (16) for a density of states as sketched
Figure 3, leads to a stability of the pseudogap ∆E(Q0, z)
as pictured qualitatively Figure 4. The pseudogap should
be less stable than the gap for small dopings but, owing to
the finite density of states in this pseudogap, this should
become more stable than the gap at higher dopings, and
before the Fermi level reaches the peak B of the pseudo-
gap. There should therefore be a spontaneous transition
from long range to short range order beyond a certain dop-
ing, through a first order transition. This model does not
rely on increasing entropy by disorder; and thus it applies
at low temperatures. It explains the otherwise surprisingly
large extent in doping of the short range AF. Finally it
does not make any specific and detailed prediction about
the fine structure of short range order and is valid whether
this is a static or a slowly fluctuating order.

The similarity of long range AF and superconduc-
tivity phase diagrams for electron- and hole-doped com-
pounds suggests that the same general characteristics
should apply to electron-doped samples. Thus, short range
AF should be present beyond the long range AF (Fig. 1),
with atomic moments similar to those in the long range

AF phase, decreasing with increasing electron-doping. The
characteristic features of an AF pseudogap should be ob-
served, with a Knight shift increasing with doping up to
the optimum doping z′0 with maximum Tc; a peak in the
density of states crossing at z′0 the Fermi level should be
observed, corresponding to the AB peak of the pseudogap.

From Figure 3, it is clear that the excitation energy
from the Fermi level to the peak B of the pseudogap
corresponds to hole excitations for underdoped samples
z < z0 and to electron excitations for the overdoped sam-
ples z > z0 in the case of hole-doping, while the reverse
should be true for electron-doped samples (z ≶ z′0). This
analysis suggests that, for overdoped samples, a (weaker)
anomaly at a temperature Tp′ increasing with doping from
z = z0 (or z′0) should be observed (cf. Fig. 5).This is in
agreement with the general picture given for hole-doped
samples by Varma [25].

5 Superconductive coupling and gaps

Let V (K
�

, K
�

′) be the effective superconductive coupling
between electrons of opposite spins, such that the super-
conductive gap ∆K

∼

is given in the BCS approximation by:

∆K
∼

= −
∑
K
∼

′

VK
∼

K
∼

′∆K
∼

′

2
√

∆2
K′ + ε2

K′
tan h

√
∆2

K
∼

′ + ε2
K
∼

′

2kBT
· (17)

As usual, εK
∼

′ is the one particle energy measured from the
Fermi level; and in the usual singlet pairing, ∆K

∼

= ∆−K
∼

.
Because of the Bragg scattering of the Bloch functions |k

∼

〉
by the short range AF order, the wave functions |K

�

〉 to be
used are combinations of such Bloch functions. We shall
assume, in this order of magnitude estimate, that they are
the same combinations (7, 8) as in the long range order.

From (7)〈
K
�

′∣∣V ∣∣K
�

〉
= α∗

k
∼

′αk
∼

〈
k
∼

′∣∣V ∣∣k
∼

〉
+ β∗

k
∼

′αk
∼

〈
k
∼

′ − Q0
�

|V |k
∼

〉
+ α∗

k
∼

′βk
∼

〈
k
∼

′∣∣V ∣∣k
∼

− Q0
�

〉
+ β∗

k
∼

′βk
∼

〈
k
∼

′ − Q0
�

∣∣V ∣∣k
∼

− Q0
�

〉 ·
(18)

Near the peak of the pseudogap (Fig. 3), one can assume
that the main contribution to |K

�

〉 will be the same as at
the peak of the gap in the long range AF.

For the binding peak B, this gives:

αk
∼

= βk
∼

= 1/
√

2 for spin up

αk
∼

′ = −βk
∼

′ = 1/
√

2 for spin down (19)

if the moment developed at the origin is up.
If then the coupling V is through phonons, one can as-

sume 〈k
∼

′|V |k
∼

〉 ∼= 0 except for k
∼

′ ∼= k
∼

, where it is negative.
It is then easy to check from (18) that:

〈K
�

|V |K
�

〉 ∼= 0 (20)〈
K
�

∣∣V ∣∣K
�

− Q0
�

〉 ∼= −1
2
〈
k
∼

∣∣V ∣∣k
∼

〉 · (21)
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This means that the phonon attractive coupling leads to
an apparent repulsive coupling due to AF fluctuations

∣∣K
�

〉
developed by Bragg scattering of the short range AF.
From equation (17), one expects a gap ∆K

∼

with dx2−y2

symmetry [4,29] and since the effective density of
∣∣K
�

〉
states is expected to be large along the hole side AB of the
square, Figure 2, the corresponding Tc is expected to be
optimal, i.e. z ∼= z0 (Fig. 3). It is also easy to check from
(18) that a coupling V through AF fluctuations, where
〈K
�

′|V ||K
�

〉 ∼= 0 except for |K
�

′〉 = |K
�

± Q0
�

〉 (where it is
positive) leads to no appreciable coupling between the dy-
namical functions |K

�

〉.
For overdoped compounds where the Fermi level shifts

below the peak B of the pseudogap (Fig. 3), and again
using the wave functions |K

�

〉 of long range AF as an ap-
proximation, the energy Ek

∼

varies linearly with ε (Eqs. (4)
and (9)) while EK

∼

varies quadratically (Eq. (10)). To first
order in ε,

EK
∼

− Ek
∼

∼= −|v| + γε

where

γ =
1√
2
t cos

u

2
·

Thus, from (8),

βk′/αk′ = −βk/αk = 1 − γε|v|.
Then, to second order in ε, equation (20) is replaced

by:

〈K
�

|V |K
�

〉 ∼= 2γε

|v| 〈k∼|V |k
∼

〉 (22)

while equation (21) is unchanged.
As ε varies linearly with overdoping (z − z0) at the

Fermi level, the gap equation (17) acquires besides its real
dx2−y2 gap ∆r

K
∼

, an imaginary component i∆i
K
∼

, increasing
linearly with overdoping and with (s or dxy) symmetry due
to the node of 〈K|V |K〉 along AB:

∆K
∼

∼= ∆r
K
∼

+ i∆i
K
∼

. (23)

The strong Van Hove anomaly at the corners of the square,
Figure 2 contributes little to the imaginary part because γ
goes to zero at A. In the pseudogap, both high densities of
states involved in the real and imaginary parts of the gap
are reduced from the values deduced from the densities
of states such as (11). Also, with increasing overdoping,
these densities decrease, leading to a general attenuation
of ∆K

∼

and of Tc.
Finally for underdoped samples, one can assume the

Fermi wave functions in the pseudogap (Fig. 3) to be built
mostly with localised Bloch functions of complex wave
vectors. Taking for instance

kxa + kya = π + iλ
kx − ky = 0 (24)

we find, using again wave functions of the long range AF,

EK
∼

∼= Ed + t
√

2(1 + ch
λ

2
)
1
2
−

[
|v|2 − t2sh2 γ

2

(1 + chλ
2 )2

]1/2

that λ vanishes at the gap edge and varies linearly again
with underdoping (z0 − z). Thus EK

∼

− Ek
∼

only varies
to second order in λ. To the same approximation that
leads to (23), we find then a pure dx2−y2 superconductive
gap, with equation (21) unchanged. Here, the densities of
states involved in (17) decrease faster with (under)doping,
leading again to a decrease of gap and Tc with increasing
z0 − z.

These predictions are in general qualitative agreement
with experiments on the variation with doping of Tc and
with the symmetry of the superconductive gap [12]. The
imaginary part of the gap observed for overdoped (holes)
samples increases linearly with doping and seems to be
of dxy symmetry. The fact that the imaginary part of the
gap develops progressively means in particular that the
real and imaginary parts of the gap have their physical
origin in the same general type of coupling [28]. Finally, if
our interpretation is correct, the couplings discussed here
are expressions of the phonon coupling 〈k

∼

′|V |k
∼

〉 when the
AF order is taken into account. If it is responsible for
superconductivity, this could explain the modest but real
isotope effect observed in Tc [7].

The same type of analysis should apply to electron-
doped compounds if, as we believe, short range AF order
develops beyond the observed long range AF one. Here, it
would be the AB peak of the pseudogap, Figure 3, which
would be involved and it is easy to show that the same con-
clusions apply to the symmetry of the superconductive gap
and to the maximum of Tc for the crossing by the Fermi
level of the (AB) peak of the pseudogap at z = z′0. As
magnetic moments are expected to decrease slowly with
electron-doping, the pseudogap should be here less marked
in width and in the height of its peaks. Thus Tc(z) is
expected to have a maximum value Tc(z′0) smaller than
for hole-doped compounds, as is indeed the case (Fig. 1).
A superconductive gap with dx2−y2 symmetry has also
been observed in underdoped electron compounds [29].
But more systematic studies are obviously in order in this
range, to test in particular an imaginary (s or dxy) char-
acter of the gap increasing linearly with overdoping.

6 Conclusions

We present an approximate description of superconduc-
tivity in cuprates which we feel has some original aspects.
We stress that, if covalency is notable in the CuO2 planes,
as the symmetry between electron- and hole-doping sug-
gests, holes are present in very sizeable amounts in O 2p as
well as Cu 3d orbitals, for electron-doped as well as hole-
doped compounds. In a situation somewhat similar to that
of transitional metals, electron correlations should play a
secondary role, and not be able to localise holes into a
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Vervey-Mott insulator. Using a simplified model where the
Coulomb intraatomic energy U is neglected but for mag-
netic properties where its effects are treated in Hartree-
Fock perturbation, we describe the electronic structures
of long range commensurate AF. We point out that, for
large enough doping this should be replaced by some sort
of short range AF, with a characteristic pseudogap. We
think that this is observed in hole- doped compounds such
as YBCO with commensurate AF, where the peak in Tc

occurs when the Fermi level crosses the lower energy peak
of this pseudogap. This explains the large value of ob-
served Tc, but also the symmetry of the superconductive
gap (dx2−y2 for underdoped, dx2−y2+ is or idxy for over-
doped samples, where the imaginary part varies propor-
tional to the overdoping). In this approach, the symmetry
of the gap is related to the special symmetry of the wave
functions in and near the pseudogap; it is coherent with an
isotropic attractive phonon mediated interaction, while an
interaction mediated by AF fluctuations would not lead to
any appreciable gap. Tc should show a small isotope effect,
in qualitative agreement with experiment.

It is expected that the same scheme should apply
to electron-doped compounds, where O 2p shells should
also have holes in appreciable amounts; superconductivity
should develop in a range of short range AF, with its fea-
tures characteristic of a pseudogap. The superconductive
gap should again have a basic dx2−y2 symmetry, with an
imaginary (s or dxy) character increasing proportional to
overdoping. Here too, the optimum Tc should take place
when the (here AB) peak of the pseudogap crosses the
Fermi level, and Tc should show a small isotope effect.

If these qualitative predictions are all confirmed, the
theoretical picture should be completed. More quantita-
tive estimates of ∆ and of the magnetic moments could
give a more precise estimate of U . Electron correlations
could then be explicitly included [1], and the coupling be-
tween CuO2 planes should be included [7] to actually es-
timate Tc. From that point of view, it is rather surprising
that the recent experiments on doping of apparently a sin-
gle CuO2 plane by electric voltage could give a large and
well defined drop of resistivity at Tc, contrary to Kosterlitz
and Thouless’s predictions.

Two major difficulties for quantitative estimates relate
to the short range AF order. First, what is exactly its self
consistent fine scale structure and the corresponding vari-
ations of the density of states in the pseudogap for the AF
commensurate with the lattice considered here [13]? Is it
static or slowly fluctuating in time at low temperatures?
What is the current description of superconductivity in
LSCO? Finally, from the point of view developed here,
it is difficult anyway to analyse in detail the electronic
structure in the normal state above Tc. It is true that, in
hole-underdoped samples, the peak B of the pseudogap is
expected to be related to a feature somewhat broadened
by magnetic disorder but very flat in energy in the recip-
rocal space: this seems to be observed in the excitation of
holes [26,31]. A less marked feature is expected in over-
doped hole samples, corresponding to electron excitations
to the same peak of the pseudogap and a (fainter) anomaly

is expected in the scheme along the line Tp′ , Figure 3. Sim-
ilar observations should be possible in the electron-doped
samples. The analogy with long range AF certainly sug-
gests electronic Hall conduction for hole-overdoping and
hole-Hall conduction for electron- overdoping, in agree-
ment with observations [10]. But the switch in sign of the
Hall conduction when going from over to underdoping re-
mains to be explained in detail. Also the exact form of
the Fermi surface and its broadening by magnetic disor-
der remain to be worked out, especially for underdoped
samples.

It can be noted also that a long range AF is often ob-
served near to a superconductive one [32]. For our specific
mechanism to work, a fringe of short range AF should
be observed next to the long range one, in the doping or
pressure conditions where superconductivity is observed.

We can compare in fine our approach with other some-
what similar ones, also using a delocalised electron picture
for the cuprates.

– Our approach, leading to a dominant superconduc-
tive d gap, is in practice very near to Pines’ approach [21],
although the detail of the local densities associated with
the pseudogap should be introduced into his computa-
tions. Also, as we start from a phonon coupling, we could
account for a (small) isotope effect. Finally the small imag-
inary component predicted for overdoping is not present
in his picture.

– Our own previous approaches [7,9] assumed short
range AF in the underdoped range only, leading then, in
the overdoped range, to a phonon coupling and supercon-
ductivity with an s gap due to the Van Hove anomaly pic-
tured in punctuated line, Figure 3. This should have been
dominant on the d coupling by AF fluctuations, leading to
a first order transition of the gap near optimal doping in
YBCO [29]. This is not observed, and the presence of AF
short range order in the overdoped range observed by neu-
trons [7] as well as by NMR techniques in pure and doped
samples of YBCO [33] contradicts our initial assumption.

– The band structure of delocalised Cu 3d and O 2p
electrons renormalised for large repulsions U [28] contains
two Van Hove anomalies when ∆ is large and a (smaller)
transfer integral is added between second neighbours Cu.
This reproduces a density of states analogous to that of
the pseudogap g′, Figure 3 and the changes with electron-
or hole-doping of the Hall conductivity and of the thermal
variation of the electrical resistivity can be satisfactorily
explained in that way [4]. Besides the apparent symme-
try between hole- and electron-dopings, this model can
explain the Fermi surfaces as measured by ARPES [3].

However such success with experiments can only result
from a very fine tuning of the value taken for t′ and for the
unrenormalised value of ∆/t (very near to the Brinkman
and Rice critical value 4). Such special values of the pa-
rameters could be considered as somewhat artificial and
the band approximation used in these conditions of very
strong scattering by U can be questioned for the corre-
sponding very narrow bands.

Finally, all of the approaches referred to above neglect
the short range AF which is at the basis of our analysis.
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It is true that, in the tJ model, a term of this sort could
be introduced by considering the (small) effect of J . In
our own model, with U of the order of t, it is the AF that
strongly contracts the energy scale of the band structure
near the AF gap (by replacing Eq. (1) by Eq. (6)). Also, in
the short range AF case, the notions of reciprocal space,
of band structure and Fermi surface need to be redefined,
especially in the underdoped range, where our model ex-
plains the low temperature increase of resistivity by the
partial localisation of the electron states in the pseudogap.

In conclusion, there are definite similarities in a num-
ber of delocalised schemes proposed more or less recently
and it is only the general fit of predicted properties with
observations that can allow one to choose between them.
We are aware that our own model, being so far very qual-
itative, fulfils with difficulty this condition.

The authors are especially grateful for stimulating discussions
on delocalised electron schemes with D. Pines, S. Barisic, J.
Bok, J. Bouvier, J.C. Phillips and L. Gorkov, together for ex-
perimental results with G. Deutscher, H. Alloul, Y. Petrov,
S.W. Loram, P. Bourges, C.C. Tsuei, M. Lagües and B.
Batlogg. G. Deutscher has spotted an initial error in the sym-
metry of the imaginary gap. Thanks are also due to C. Fradin
and N. Dupuis for typing the text and drawing the figures, and
to the editors of this Journal for their help.
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